Skip to main content

Determinación de los estados erosivos actuales en áreas afectadas por los incendios forestales de la Región del Maule, usando datos LiDAR.

 

Casalí J, López JJ, Giráldez JV. (1999). Ephemeral gully erosion in southern Navarra (Spain). Catena, 36: 65–84.

Casalí J, Loizu J, Campo MA, De Santisteban LM, Álvarez-Mozos J. (2006). Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena, 67: 128–138.

CIREN. (2010). Determinación de la erosión actual y potencial de los suelos de Chile. Centro de Información de Recursos Naturales. Ministerio de Agricultura. Publicación CIREN N°139. Santiago de Chile. 292 p.

Daba S., Rieger W., Strauss P. (2003). Assesment of gully erosion in eastern Ethiopia using photogrammetric techniques. Catena, 50: 273-291

Evans, M., Lindsay, J., (2010). High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surf. Process. Landf., 35: 876–886.

Eustace AH, Pringle MJ, Denham RJ. (2011). A risk map for gully locations in central Queensland, Australia. European Journal of Soil Science, 62: 431–441.

FAO. (2015). El suelo es un recurso no renovable, su conservación es esencial para la seguridad alimentaria y nuestro futuro sostenible. Disponible en: http://www.fao.org/3/i4373s/i4373s.pdf. Consultado el 20-04-2021.

Giménez R, Marzolff I, Campo MA, Seeger M, Ries JB, Casalí J, Álvarez-Mozos J. (2009). Accuracy of high-resolution photogrammetric measurements of gullies with contrasting morphology. Earth Surface Processes and Landforms, 34(14): 1915–1926.

Gómez-Gutiérrez A, Schnabel S, Lavado-Contador F. (2009). Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degradation and Development, 20: 535–550.

James, L.A., Watson, D.G., Hansen, W.F., (2007). Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena, 71: 132–144.

Johansen K, Taihei D, Tindall D, Phinn S. (2012). Object-based monitoring of gully extent and volume in North Australia using LiDAR data. Proceedings of the 4th GEOBIA, May 2012, Brazil, 168.

Korzeniowska, K. (2017). Object-based image analysis for detecting landforms diagnostic of natural hazards. Dissertation for the Degree of Doctor of Natural Sciences. University of Potsdam. 157 p. https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/40224/file/korzeniowska_diss.pdfKorzeniowska 2016 y 2017

Perroy, R.L., Bookhagen, B., Asner, G.P., Chadwick, O.A., (2010). Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology, 118: 288–300. 

Shruthi, R.B.V., Kerle, N., Jetten, V., (2011). Object-based gully feature extraction using high spatial resolution imagery. Geomorphology, 134: 260–268.

Wu Y, Zheng Q, Zhang Y, Liu B, Cheng H, Wang Y. (2008). Development of gullies and sediment production in the black soil region of northeastern China. Geomorphology, 101: 683–691.